February 2021
A cross the nation’s manufacturing industries, there is a universal dependence on the reliable supply of low-pressure air within a 0.3 to 3bar range to meet the demands of a wide variety of process applications. Probably none are more stringent than those for water diffused aeration and filter backwashing duties within industrial effluent treatment plant (ETP) installations. And it is in this cleaning of process waste- or contaminated water to make it reusable and recyclable where selecting the right low-pressure blower technology for the job is an essential consideration. ETP blower applications ETP installations are to be found within the process operations of a wide variety of industries such as food manufacturing and the production of pharmaceuticals, textiles, glass, cement, paper, and pulp. They play an essential role too in the output of tanneries, chemical industries, and general manufacturing activities. Blower efficiency and operating characteristics are important factors in the performance of effluent treatment. Not only are these processes required to conform to regulatory and environmental standards, but compliance with strict regulations concerning ETP operations helps to reduce water pollution and encourage water conservation. The variety of blower technologies There are different types of low-pressure blower technologies available to the industrial plant operator, categorised as lobe, screw, centrifugal, and multistage options. The centrifugal technologies (high-speed turbo blowers, multistage blowers and multistage centrifugal blowers) are primarily designed for low-pressure applications that require higher flow rates of over 5,000 m3/hr, and are best suited for larger and specialised applications. In contrast, the majority of ETP blower applications favour the positive displacement options of fixed-speed and VSD driven versions of tri-lobe technology or the direct drive, oil-free, rotary screw blowers delivering a low-pressure flow rate of up to 9,100 m?/h. In the case of lobe blowers, leading manufacturers such as Atlas Copco offer the option of pure mechanical basic units employing dial gauges for pressure reading or high-end solutions with integrated VSD inverter and intelligent control. But for ETP applications involving back pressures greater than 0.5 bar(g), rotary screw blowers lead the field with an average 30% greater energy efficiency compared to traditional technologies. They demand less energy because the internal compression concept offers higher efficiency derived from the design of its rotor elements. Choosing the right blower technology The start point is a thorough analysis of an installation and recognition that application characteristics are key to selecting the right technology. In the decision process, there will undoubtedly be one or more aspects that might take precedence over others. Apart from finding a blower technology that matches the airflow and pressure needs of a specific ETP process, other factors such as initial investment cost or return on investment will also affect the search for the right air blower technology. Key factors that should be taken into consideration include: Flow and Pressure: A correctly sized blower installation will help to achieve a more energy-efficient process. For instance, in a situation where compressor turndown is employed as the low-pressure source, replacing the compressor with an air blower to deliver 0.3 and 1.5 bar(g) air will result in significant savings. For every 1 bar(g) the air is compressed above the actual demand, 7% of energy is wasted. Operational costs and TCO: The capital cost of a low-pressure aeration lobe blower may represent less than 5% of a total ETP’s investment. This may appear to be an attractive proposition, but blower running costs are a far more significant factor and are likely to constitute up to 80% of the energy costs for an entire ETP. This is because the aeration blowers need energy to run 24 hours a day in supporting the biological processes. They supply the right amount of oxygen to micro- organisms and maintaining their constant, balanced performance within the plant. It follows that, when considering the total cost of ownership of a blower installation, the need to seek an energy-efficient solution should be at the top of the list. Application conditions: Site characteristics have a bearing on blower choice. For example, limited space availability for a blower installation might dictate the choice of a technology offering a smaller footprint and lower noise levels. On the other hand, the application criterion of lower energy costs may be best met by a more energy-efficient technology that comes with a higher capital cost. Operating noise levels: A feature of the latest generation of low- pressure blowers is intelligent baffle and canopy design that provides reduced sound levels down to 72dB(a) for an improved working environment. Consequently, installation costs are reduced as there is no need for the provision of noise-insulated rooms and doors. Service and lifetime support: When it comes to routine maintenance and service support, some older blower technologies may require units to be serviced, repaired or re-furbished offsite. Advanced design developments in the latest oil-free, low-pressure blowers now sees the inclusion of low maintenance components, extended on-site service intervals, and the benefits of lifetime customer support plans. Comparative performances: It pays to check the vital statistics. As an Process, Controls & Plant Focus on: Compressed Air 20 | Plant & Works Engineering www.pwemag.co.uk February 2021 How to select the right blower technology? PWE takes a look at how to select the right blower technology for industrial effluent treatment plants.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjQ0NzM=